

ESTL Overview

Name:

Mario Delgado

Date:

Page:

Sept. 2002

1

ESTL TEST CONCEPT

All communications scenarios pictured as well as MCC data processing can be emulated in the ESTL test bed

What does ESTL consist of?

Name:		
	Mario Delgado	

Date: Page: Sept. 2002

Hardware/Software

- ? ESTL facility represents a \$150 million capital equipment investment containing 18,500 square feet of active floor space
- ? As an end-to-end testbed the ESTL contains high-fidelity equipment of both ground and spacecraft communications systems
- ? Significant features of the ESTL include the following:
 - ? Five RF shielded enclosures for spacecraft testing
 - ? High fidelity equipment of both types of ground stations
 - GSTDN direct link ground station,
 - TDRS Ground Terminal
 - ? A TDRS satellite communication system with S-band single access (SSA) and Ku-band single access (KSA) capability
 - ? Unique test instrumentation systems, including Dynamic Doppler Frequency profiles and accurate, controlled, dynamic space loss emulation
 - ? Space Shuttle Orbiter Ku-band, S-band, and ultrahigh frequency (UHF) prototype and/or qualification units (including encryption equipment)
 - ? GFE products such as SSCS, OIU, ECOMM
 - ? A roof mounted, 16-foot S-band antenna system
 - ? Three antenna radomes for RF transmission/reception from on orbit spacecraft or TDRS's

ESTL/TDRSS INTERFACE TEST CONFIGURATION

ESTL transmits to TDRSS network for Shuttle/Station/GFE/payload mission pre-flight checkouts/tests and hardware, firmware, and software modification checkouts for MCC and STGT

ESTL Services to the Agency

Name:		
	Mario Delgado	
1		D

Date:

Page:

Sept. 2002

5

ESTL Products: we provide

- ? In depth RF communications performance verification and characterization testing for all Human Spaceflight Programs
- ? In depth RF characterization testing for payloads, satellites, and other unmanned vehicles
- ? Shuttle and Station RF Anomaly Resolution Test Bed Pre-launch, Real-time and Post-flight
- ? Support to TDRSS Network Shuttle Pre-launch Verification/Validation Tests, TDRS checkout, TDRSS Network Firmware checkouts
- ? Avionics GFE development and verification testing
- ? Venue for future R&D communications ventures
- ? RF Communication Certification
- ? MCC Ground Support

ESTL Products

Name:	
	Mario Delgado

Date:

Page:

Sept. 2002

6

ESTL provides complete life cycle test capability for all programs.

- ? Analysis model verification
- ? Design Development (e.g. OCA, HDTV)
- ? System Verification (Shuttle & Station S-band, Ku-band, UHF)
- ? System Certification (ECOMM, SSCS)
- ? System preflight checkout (Hubble Space Telescope)
- ? On-Orbit support (FM System TV downlink first orbit)
- ? On-Orbit anomaly investigation/resolution
- ? Sustaining engineering of operational systems

Su	bi	e	ct

ESTL Personnel

Name:		
	Mario Delg	gado
Date:		Page:

Date:

Sept. 2002

Experience

- ? Highly trained and experienced test team in place with over 39 years of corporate knowledge in RF **Communication Systems Testing**
- ? Complex, specialized test techniques developed and continuously refined over the life of the facility
- ? Specialized test equipment developed in-house to support unique test needs
- ? ESTL ground station support personnel (Honeywell) provided by operational ground station support contractor also with 39 years experience supporting manned programs
- ? ESTL test personnel highly familiar with mission operations (Ground Network and MOD)
- ? ESTL personnel highly familiar with Shuttle and Station communication systems
- ? Personnel are cross-trained and have more than one function in the ESTL.

ESTL Equipment

Name:		
	Mario Delgado	

Date:

Page:

Sept. 2002

8

Space Shuttle Orbiter

- ? Ku-band
 - ?EA1
 - ? Signal Processor
 - ? Ku-band Deployed Assembly System (antenna)
- ? S-band
 - ? **PA**
 - ?NSP
 - ? Transponder
 - ? Antenna Switch Assembly
 - ? Preamp
 - ? ATU
 - ? ACCU
 - ? FM Transmitter
 - ? FM signal processor
- ? Other
 - ?OIU
 - ?SSOR

International Space Station

- ? Test Bed can accept DVTM or Flight Units
- ? Space to Ground System (SGS) Antenna (proto-flight spare)
- ? SSSR

ESTL Equipment (cont.)

Name:	
	Mario Delgado
	I

Sept. 2002

9

Page:

Ground Stations

- ? Second TDRS Ground Station (exact copy)
- ? Ground Tracking Data Network (exact copy)

TDRS Satellite Simulator (electrically equivalent)

Ground Processing Equipment

- ? Front End Processor (station and shuttle)
- ? GSTDN ground processing hardware (MBR)

ESTL Equipment (cont.)

Name:

Mario Delgado

Date:

Page:

Sept. 2002

10

ESTL Special Test Equipment

Name:	
	Mario Delgado

Date:

Sept. 2002

11

Page:

Calibrated hard-line RF Paths for S-band, Ku-band, and UHF

- ? 5 Shielded Enclosures
- ? Calibrated continuously-variable Attenuators; DC-4GHz, 12-18GHz

Antennae

- ? Three antenna radomes for RF transmission/reception from on orbit spacecraft or TDRS's
- ? Roof mounted, 16-foot S-band antenna system

Bit and Frame Error Equipment

- ? High Rate Open and Closed Loop Bit Error Detectors, DC to 100Mbps
- ? Open Loop Bit Error Detectors to 700Mbps
- ? Frame Sync Status Detectors

Interfaces to MCC, SAIL, ISIL

- ? EHROCS (fiber equipment)
- ? Analog Voice
- ? SDI

Support

- ? ESTL Display system
- ? Electronic Monitoring Alarm System (e.g., over-temp, over-voltage)
- ? ISS Data Handling System (BSP Simulator, control station boxes)

ESTL External Interfaces

Name:

Mario Delgado

Date:

Page:

Sept. 2002

12

Commercial Usage of ESTL

Name:		
	Mario Delgado	
Date:		Page:

Date:

Sept. 2002

13

External customers use the Space Act Agreement vehicle to work with ESTL

External Space Shuttle Customers

- ? European Space Agency
- ? Russian Space Agency.

External Space Station Customers

- ? European Space Agency
- ? Naval Research Laboratory

Other Customers

- ? Provided testbed and additional expertise for Spacehab to develop a telemetry link multiplex interface with the Shuttle Ku-band Signal Processor (Ku-SP), Space Network, and Mission Control Center
- ? Discussing tests for Spacehab related to compatibility with Inmarsat

New ESTL Shuttle Upgrades

Name:
Mario Delgado

Date:

Page:

Sept. 2002

14

Digital Operational Recorder

? Nonflight unit to replace the engineering unit used by ESTL

Solid State Recorder (Mass Memory Unit (MMU))

- ? Replacement for the Operational Recorder
- ? Only plays back in forward direction
- ? Has playback rates (2048, 1024, 960, 192, 128, & 60 kbps)
- ? ESTL developed and ATP'd a controller that operates thru the MDM port

Space-to-Space Communications System (SSCS)

- ? Replacement for EVA backpack
- ? ESTL maintains an SSOR, SSSR, and SSER (can accommodate 2 more SSER units)
- ? Currently developing a monitoring system to display the status of the radio network

DTV MUX/DEMUX

- ? Integrated a flight DTV MUX and a GSE DEMUX into the ESTL testbed
- ? SDI tie lines were installed this year that allow for signal interface with MCC DTV GSE

ESTL Testbed Upgrades

Name:
Mario Delgado

Date:

Page:

Sept. 2002

15

ESTL High Rate Optical Communications System (EHROCS)

- ? Capable of supporting up to 100 Mbps (>10 of operation)
- ? Currently developing >1 Gbps fiber network for future Ka-Band support

Small Conversion Device (SCD)

- ? Provides an interface to the IONET which allows access to the NASCOM community
- ? Up to 3 Mbps of offsite capability

Clock and Data Recovery System

- ? Bit sync for the TSI FEP
- ? Supports I/Q downlink of up to 600 Mb per channel

TSI Front End Processor (FEP)

- ? Currently only Record/Playback Implemented
- ? Upgradeable to full FEP processing capability
- ? 600 Mbps capability (can support 75 Mbps and 150 Mbps station downlinks)
- ? 300 GB Redundant Array of Independent Disks (RAID) for recording

Loral Front End Processor (FEP)

- ? Second unit due to arrive in early 2003 for STS processing
- ? Operates up to 50 Mbps
- ? Current FEP has a full compliment of station cards
 - ? 12 TAXI I/O cards (Fiber, ~50 Mbps, 8 payload channels/4 video channels)
 - ?3 TIO cards (RS422, <10 Mbps, 2 inputs/2 outputs)
 - ? 1 HR TIO card (Fiber/ECL, 50 Mbps, 1 input/1 output)
 - ? 2 DSP mezzanine cards (to support station audio and Reed-Solomon)

ESTL Testbed Upgrades (cont.)

Name:		
	Mario Delgado	

Date:

Page:

Sept. 2002

16

TSI Video Converter

- ? 4 video converter channels
- ? Each channel converts CCSDS VBSP packets to NTSC video

ESTL TAXI Test Set (HRFM Test Set)

- ? 12 TX/12 RX independent channels
- ? Each channel operates up to 100 Mbps
- ? Recover/Record 90 GB
- ? Bitstream mode
 - ? Generate serial continuous data stream
 - Custom frame formats (constant, dynamic)
 - File playback of real data
 - Variable parsing schemes
 - Insert errors, illegal delimiter/TAXI codes, vary the clock frequency
 - ? Recover/Record serial data
 - Real time checks
 - Post recovery analysis (bit for bit, byte for byte, frame for frame)
- ? CCSDS Packet mode
 - ? Generate packet streams
 - Custom frame formats (constant/variable length)
 - File playback of real data
 - Insert errors, illegal TAXI codes, illegal lengths, vary the clock frequency
 - Variable parsing schemes
 - ? Recover/Record serial data
 - Real time checks
 - Post recovery analysis (bit for bit, byte for byte, packet for packet)

Su	bi	ie	ct
Uu	~J	,	UL

ESTL Contact

Name: Mario Delgado Page:

Date:

Sept. 2002

17

ESTL Facility Manager

Ned J. Robinson III EV4/System Analysis & Test Branch ned.j.robinson1@jsc.nasa.gov 281-483-0130